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Abstract— This paper proposes novel methods based on finite 

element method (FEM) for detecting and separating smoke 

from a  single image frame of a video. Specifically, an image 
formation model is derived based on the atmospheric scattering 
models. The video is divided into number of frames and then 

apply the novel methods for detecting and separating smoke 
from a single image frame. The separation of a frame into 
quasi-smoke and quasi-background components is formulated as 

convex optimization that solves a sparse representation problem 
using dual dictionaries for the smoke and background 
components, respectively. A novel feature is constructed as a 

concatenation of the respective sparse coefficients for 
detection. In addition, a method based on the concept of deep 
image matting is developed to separate the true smoke and 

background components from the smoke detection results. 
Previous algorithms have poor performance when an image 
has similar foreground and background colors or complicated 

textures. Extensive experiments on detection were conducted and 
the results showed that the proposed feature significantly 
outperforms existing features for smoke detection. In  

particular,  the  proposed  method  is  able  to  differentiate 
smoke from other challenging objects (e.g. fog/haze, cloud, and 
so  on)  with  similar  visual  appearance in  a  gray-scale  frame. 

Experiments on smoke separation also demonstrated that the 
proposed separation method can effectively estimate/separate the 
true smoke and background components. 

 
Index Terms— Smoke detection, smoke separation, finite element 
method (FEM), deep image matting, surveillance, sparse 

representation. 
 

1. INTRODUCTION 

VISION-based smoke detection has many advantages over 

the traditional photoelectric- or ionization-based smoke 

detectors, including being suitable for both closed and open 

spaces. Furthermore, it can provide early detection with 

information on the location and intensity [1]–[5] of smoke. 

 

To the best of our knowledge, almost all existing detection 

algorithms are video-based and the video is assumed to be 

cap-tured by a stationary camera in order to facilitate the 

motion detection and feature extraction required by these 

algorithms. However, such requirement can hardly be met in 

practical scenarios. First, cameras in an open space inevitably 

suffer jitter  under  severe and  dynamic environment such   as  

 

 

 

 

heavy rain and wind. The detection accuracy of the state-of-

the-art video-based method [5] dropped from 95.5% on video 

from a stationary camera to 54.5% on video from a non-

stationary camera with only a few pixels of jitter. Non-

stationary or moving cameras are typically installed on 

commonly used unmanned aerial vehicle (UAV)-based and 

recently drone-based bushfire surveillance. Second, 

surveillance images are often streamed in a resource-limited 

infrastructure such as sensor networks. In these applications, 

detection of smoke from single frames becomes imperative. 

However, there is little study so far on single frame-based 

smoke detection. This article presents a novel method to 

address this problem.  
Conventional vision-based smoke detection techniques [1], 

[2], [6] usually follow an object detection framework in which 

each frame of the input video is divided into blocks. For each 

block, salient features are extracted and employed to classify 

the block into smoke and non-smoke. The success of these 

techniques depends on identification of robust visual features 

that can characterize smoke and reliable extraction of these 

features. Among the commonly used visual features, texture is 

the most reliable because motion is highly subject to the 

environment and weather conditions and color is subject to a 

number of factors including the type of material that is 

burning and illumination conditions. For example cameras 

often switch to gray-scale under low illumination during 

evening or at night. In addition, due to the deformable and 

transparent nature of smoke, extracted visual features are often 

corrupted by the non-smoke background, especially in cases 

where the smoke is light or at its early stage. To address this 

issue, Tian et al. [4], [5] recently proposed to separate the 

smoke component from the background and to extract features 

from the smoke component. While this approach has 

significantly improved the detection rate as reported in [4] and 

[5], it requires a video captured by a stationary camera to 

estimate the background through background modeling. For a 

single frame, it is no longer possible to estimate the required 

background.  
The proposed method follows the concept of image 

separation for smoke detection as presented in [5] and takes a 

further step to separate the smoke component from a single 

gray-scale frame. The weight of the
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composition is a function of the thickness and the scattering 

coefficient of the smoke. A dual over complete dictionary 

approach is then proposed to model the background and 

smoke components. The separation of the two components is 

formulated as a sparse representation and convex optimization 

problem. This dual-dictionary model provides us with the 

sparse coefficients of the smoke and background components 

as effective features for detection. However, the sparse 

representation can only allow us to estimate a scaled version 

of the smoke or background components; herein referred to as 

quasi-smoke and quasi-background respectively. A method 

based on the concept of deep image matting is developed to 

further estimate the true smoke and background components.  
This paper is a significant extension of the work presented 

at the 2014 Asian Conference on Computer Vision [8]. The 

extension is five-fold: a) a method based on cascaded multi-

ple classifiers to differentiate smoke from other objects that 

share similar visual appearance to smoke in a gray-scale 

image frame. Examples of such objects include fog/haze, 

cloud, steam, sky, shadow, glass, etc.; b) a novel image-based 

method to estimate the true smoke and background 

components from the detected smoke blocks, experimental 

evaluation of the method and its comparison to the Guided 

Image Filtering (GIF) method; c) detailed analysis of the 

image formation model and its difference from the model used 

in haze/fog removal in the literature; d) formalization of the 

dual-dictionary approach to separating an image into quasi-

smoke and quasi-background components and a method of 

using the estimated sparse coefficients for detection; and  
e) systematic and extensive empirical evaluation of the 

separation and detection methods.  
The remainder of the article is organized as follows: a 

review of some representative video-based smoke detection 

methods is provided in Section II. An image formation model 

for smoke is derived in Section III-A. The proposed method 

for single frame smoke detection based on the image 

formation model is presented in Section III-B.  
On the basis of the detection result, a method for single 

frame smoke separation is proposed in Section IV. 

Experimental results are presented in Section V along with 

discussions. The paper is concluded with some perspectives 

on future work in Section VI. 

 

2. RELATED WORK 
 

The success of existing video-based smoke detection 

methods lies in identifying robust visual features to 

characterize smoke. To motivate the rationale for the proposed 

methods some representative video-based smoke detection 

methods are reviewed with respect to the features they used, 

viz. motion, color, edge and texture. Review of other related 

works such as image separation and deep image matting from 

which the separation of true smoke component is developed 

can be found in [5], [9], and [10], respectively.  
From motion point of view, an accumulative motion model 

has been proposed to capture the motion characteristics of 

smoke in [11] and [12]. However, the assumption that smoke 

usually drifts upwards continually through hot airflow makes 

 

this model ineffective in a scenario where wind is present. 

Other research efforts have extracted motion features of 

smoke using optical flow [13]. For instance, optimal mass 

transport optical flow, which introduces the concept of mass 

transport in the sense of minimal transportation cost to optical 

flow computation, was used as a low-dimensional descriptor 

of smoke’s motion [13]. In addition, a histogram of oriented 

optical flow was extracted as a temporal feature based on the 

fact that the diffusion direction of smoke is upward owing to 

thermal convection. As can be inferred, this temporal feature 

will not be effective in the presence of strong draught or wind. 

Moreover, no motion information is available from a single 

image.  
The fact that the color of smoke is usually grayish provides 

a cue for the extraction of color features [1], [12]. Despite the 

differences in methods reported in the literature, a 

commonality amongst them is that the three intensity values 

from the RGB channels of a smoke pixel are equal or similar. 

For example, a reference color model for smoke was selected 

in the RGB color space to measure the deviation of the current 

pixel color from the model [1]. An analysis in CIELAB color 

space was performed in and a better clustering of the 

chromatic features of smoke was reported.  
Edge-based features used for smoke detection can be 

divided into two groups. One group of features is extracted to 

characterize the boundary of smoke while the other group of 

features describes the effects of smoke on the edges of objects 

covered by smoke. In the first group, histogram of oriented 

gradient (HOG) descriptors were extracted for smoke 

detection. The underlying assumption in these methods is that 

the direction of smoke diffusion is upward owing to thermal 

convection such that the gradient distribution of a smoke 

boundary has a distinguishable pattern. The phenomenon that 

blurred edges could be observed in smoke-covered areas of a 

scene image has motivated the second group of features. As 

edges contribute to high frequency information, the 

consequent decrease in high frequency has been used as a cue 

to perform smoke detection in [2] and [12], where wavelets 

were adopted to extract horizontal, vertical, and diagonal high 

frequency information of images. However, this decrease in 

high frequency is not unique to smoke coverage and is hard to 

measure its extent from a single image due to the lack of 

background information.  
As a result of the dispersive distribution of smoke, texture 

features have been extracted for smoke detection [3], [6], [12]. 

For instance, local binary pattern (LBP), a well-known 

descriptor for texture classification was applied to smoke 

detection [3]. In a similar vein a modified local ternary 

pattern, namely center symmetric local ternary pattern (CS-

LTP) was proposed as a texture descriptor for smoke. It was 

designed to improve the robustness of handling noise and 

reducing the number of bits in feature description, and thus 

speeding up its histogram comparison process. 

 

Additionally, smoke has been considered as a self-affine 

fractal and its Hurst exponent was employed for smoke 

detection. Inspired by the air light-albedo ambiguity model, 

the concept of transmission was introduced as a feature of 
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smoke. Since no single feature can perfectly characterize 

smoke, feature fusion techniques have been proposed. 

Representative works are found in [12]. Recently, to reduce 

the level of noise introduced into the extracted features by the 

background, an image separation approach has been proposed 

for smoke detection [4], [5]. It actively separates the smoke 

component, if any, from the background. Texture features are 

then extracted from the separated smoke component for 

detection.  
In summary, video-based methods require a stationary cam-

era. Motion and color features are subject to environment and 

the nature of materials being burned respectively. The 

proposed method for single frame smoke detection is based on 

a novel feature derived from the physics of smoke formation 

and is able to encode reliable information for detection. 

 

3. SMOKE DETECTION BY DUAL-DICTIONARY 

MODELING 
 
3.1 Physics-Based Image Formation Model 
 

Based on the dichromatic atmospheric scattering model [7] 

developed for adverse weather conditions (e.g. fog/haze), 
smoke will act as the scattering medium like fog/haze. How-

ever, unlike fog/haze, smoke usually does not occupy the 

entire space of the scene. Assume that smoke appears at 

distance zs from a camera and its thickness along the line of 

sight is z. Since there are no point sources of light, the 

irradiance at each background scene point is dominated by the 
ambient radiance, and the irradiance due to other scene points 

is not significant. By ignoring the multiple scattering, the 

observed intensity at pixel x [8] can be expressed as 
 

F(x ) = (1 −   (   z, x )) B(x ) +   (   z, x )S(zs , x ), (1) 

if  the  pixel  is  covered  by  smoke.  In  Equation (1) 

B(x ) = z
g

2 L∞ ρ accounts for the background under clear air 
when there is no smoke (referred to as the background 
component or non-smoke component interchangeably); ( z, x ) 

= 1 − e
−β

 
z
 is in the range [0, 1] and referred to as blending 

parameter; S(zs , x ) = ge
−β

 
zs

 L∞ represents the pure smoke 

at distance zs from the observer and referred to as the smoke 
component; z is the scene depth at pixel x ; g is a constant that 
accounts for the optical settings of the imaging system;  

β is the scattering coefficient; L∞ is the radiance of the 

horizon (z = ∞); and ρ represents the reflectance properties 
and aperture of the scene point. When the pixel is not covered 
by smoke, Equation (1) reduces to F(x ) = B(x ).  

Notice that Equation (1) appears similar to the haze image 

model [24]. But they are in fact different. First, haze occupies the 

entire space. This leads to a constant global atmospheric light A 

in the haze model. Most de-hazing methods are derived  
based on a constant A. In contrast, smoke model assumes that 

a smoke appears at location (zs , x ) and with thickness, z, 

which leads to non-constant atmospheric light term, S(zs , x ), 

for smoke. Second, the attenuation of radiance in haze always 

exists for all pixels and depends on the scene depth. However, 

attenuation ( z, x ) only occurs if the light goes through the 

smoke and it depends on the thickness of the smoke. 

 

In addition, the purpose of smoke detection and de-

hazing is different. In de-hazing, the focus of interest is the 

back-ground image and the objective of de-hazing is to obtain  
a haze-free or haze-reduced background image. It is of no 

concern whether the haze component can be separated or how 

accurately it can be separated. However, in smoke detection, 

the focus of interest is the smoke component. The objective is 

to accurately judge whether there is smoke somewhere in the 

image or not. If there is, we need to separate the smoke 

component as accurately as possible to assist the assessment 

of the intensity and extent of the smoke. Hence, most de-

hazing methods are not designed to serve as smoke detectors. 

 

3.2  Smoke Detection on Block Level 
 

Because B, and S vary across the scene (frame) and only F 

is observed, it is hard to solve for and S globally. This article 

adopts block-based approach and assumes that the thickness z 

of the smoke within a block is constant so that  
is constant within a block (not over the entire image!). 

However, we do not assume S is constant even within a block 

so as to accommodate the local spatial heterogeneity. Sparse 

representation is adopted to represent the smoke within each 

block. 

Let f ∈  R
N

 be a given image block with  N  pixels,  
b ∈  R

N
 and s ∈  R

N
 be the corresponding background and 

smoke components. Then the image formation model 

described by Equation (1) can be written as 
 

f = (1 − ω)b + ωs + n, (2) 

where n ∈  R
N

 represents modeling noise and ω is the 

blending parameter within the block f . Guided by the image 

formation model and in order to extract reliable features for 

smoke detection from a single image block f, the background 

component b should be separated from the smoke component 

s. Intuitively, the problem can be formulated as the 

minimization of the power of the residual noise: 
 

min   

− ( 

  2  

 ω ∈  [ 

 

, 

 

1]. 

(3) 

ω,b,s ǁf− ωs  1 − ω)b ǁ2 . 0   

              
Given only a single input image block f, Equation (3) is 

under-determined because there are N equations but 2N +1 

free variables for a gray-scale image. Further constraints are 

required to obtain a unique and reliable solution to Equation 

(3). A good estimation of b, s, and ω is expected if both b and 

s could be well modeled according to the visual property of 

non-smoke and pure smoke.  
Research on image statistics suggests that image patches 

can be well-represented as a sparse linear combination of 

elements from an appropriately chosen over-complete 

dictionary [25]. If each image block is considered as a point in 

an N-dimensional space, pure smoke images are also likely to 

lie in multiple low-dimensional subspaces as validated in  
[5] and [8]. Driven by the progress of sparse representation 

methods [26] in recent years, if sample smoke images can be 

collected or generated to capture the distribution of pure smoke in 

the space, it is expected that any specific pure smoke image 

would have a sparse representation with respect to the samples. 

Similar argument can be made for samples of non-smoke
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images. Such a  collection of  samples  represents a dictionary       Algorithm 1 Single Image Frame Smoke Detection  
and each  sample in the  dictionary is  typically referred  to   as  
an atom. Both dictionaries, one for pure smoke and the other  
for   non-smoke, are  designed such  that  they lead  to sparse  
representations over only one   type of image content  (either  
pure smoke or non-smoke). In addition, each dictionary should  
be trained using  real samples to  adapt to the specific  type of  
image content.  In this article, the  two dictionaries are trained  
independently. More sophisticated schemes such as supervised  
dictionary learning  can be adopted   to enhance the  
discriminative power of the dictionaries.  

Let Ds ∈  R
N

 
×

 
J
 ( N J ) be a dictionary for pure smoke  

and each column of Ds be an atom. Then a pure smoke image  

s is expected to be sparse in Ds:  

s = Dsxs  s.t.   xs  0 ≤ Ms , (4)  
where xs  0  counts the number of non-zero entries in xs.  
Similarly a non-smoke image b is expected to be sparse in  

b = Dbxb  s.t.   xb  0 ≤ Mb . 
(5)  

Here Ms and Mb are the upper bounds for the number of non-  
zero entries in the sparse coefficients xs and xb respectively.  
Considering Equation (4) and (5) as the models for pure smoke  
and non-smoke respectively, Equation (3) can be rewritten as  
follows:   

min    
ω 

  
s − ( 

 
− ω) 

         2  
ǁ0 + γǁ 

 
s ǁ 0} 

    
ω,xb,xs {ǁf− D s X 1 D b  bǁ  2 + ηǁ b X 

Dbyb  and Dsys  can be quasi-background and quasi-smoke 

component respectively hereinafter. Given 
s.t. ω ∈  [0, 1], 

                  

(6)                   f, Db, and Ds, Equation (9) can be solved through alternate 

where η and γ  are regularization parameters. Due to the non- optimization with regard to yb and ys respectively by using 

onvexity of the  0-norm, a convex approximation is obtained sparse  coding  algorithms  such  as  the  feature-sign  search 

by replacing it with the  1-norm:             algorithm. Each is a convex problem and the convergence 
min  

− 

    

s − 

  

− ω) 

      

+ ηǁ 

 

1 + γǁX 

 

s ǁ 1} 

of the optimization is guaranteed. Once the difference 

ω,xb,xs {ǁf ω D s X (   b  Xbǁ b   between the objective function (Equation (9)) values in two 

s.t. ω ∈  [0, 1].                   (7) consecutive iterations is  less  than a predefined threshold, 

The optimization problem expressed by Equation (7) is convex 

the optimal yb and ys can be obtained.  

 

For any input image block f  irrespective of whether it 
with respect to one of xb, xs, and ω  when fixing the other 

 

contains smoke, the separated quasi-smoke component tends to 
two. One may propose to optimize the three terms alternately. 

be more like smoke. Thus features extracted from quasi-smoke 
However, ω and (1−ω) are coupled with xs and xb respectively component only may not be sufficient for deciding whether 
by multiplication, which indicates  that xb, xs, and ω  may 

there is smoke or not in f. This is particularly true when f is 
not be well estimated to reflect their true values, if no other 

not covered by any smoke. Similar argument can be made for 
constraints are imposed. Noting that the optimal ω is a scalar, 

the quasi-background component. However, features extracted 
we can always absorb ω  into xs  and (1 − ω)  into xb  in from both components jointly characterize f and are expected 

Equation (7), and solve for ωxs  and (1 − ω)xb. The only to have a good discriminative power. One may propose to 

changes are to scale down γ and η by ω and (1 − ω) extract LBP from both components and concatenate them as 
respectively. This does not significantly change the essence 

a feature to characterize f. Actually the coefficient vectors   
of optimization, but helps to reduce one unknown ω. Based 

yb and ys indicate which atoms and the proportion thereof 
on this consideration, the following variables are defined 

that contribute to the construction of the quasi-background      

yb = (1 − ω)xb; 
 

ys = ωxs. 
      

           (8) and quasi-smoke components. Thus, yb and ys are expected to 

Then Equation (7) can be written as 
       encode more discriminative information. Based on this insight, 
       yb and ys are concatenated as a novel feature to characterize f.            

Dbyb  
2 

  

η 

  

γ 

     

min  ǁ  f 
 

-Dsys 

  

y
b 

 

=1+ 

 

y
s ǁ 1.  (9) The extracted feature is input to an SVM classifier. A decision 

              yb,ys                           2           is made on whether there is smoke or not in f. 
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3.3 Discussions 
 

In the proposed detection method, the two dictionaries are 

learned offline and, once learned, they can be generally applied to 

any image block for smoke detection. Therefore, most 

computation time in detection is spent in the step of feature 

extraction; that is, obtaining the sparse coefficients to represent 

the quasi-smoke and quasi-background components by solving 

Equation (9). In this step, the sparse coefficients yb and ys are 

alternately calculated using the feature-sign search algorithm. 

The complexity of this step is O(K1 K2(K3
3

 + K4
3
)), where  

K 1 is the number of iterations within the feature-sign search 

algorithm, K2 is the number of alternations, K3 is the number of 

non-zero entries in yb, and K4 is the number of non-zero entries 

in ys. Typical values of K1, K2, K3 and K4 for our experiments 
are 5, 15, 30 and 20 respectively.  

It is noted that an image formation model similar to Equation 

(2) was also used for video-based smoke detection in [4] and [5]. 

In [4] and [5], background modeling based on the information of 

previous video frames is a strict prerequisite for image 

separation. In this article a different separation method is 

proposed for single frame smoke detection. Our work differs 

from it in two key aspects. First, the separation problem was for a 

mixture of texture and piece-wise smooth components. Second, 

the dictionaries used in that work were restricted to well-known 

transforms such as the curve let and discrete cosine transforms. 

As shown later in the article, the dictionaries Ds and Db are 

learned from real samples so as to adapt to the smoke and 

non-smoke classes. A dictionary was trained to represent the 

high frequency part of an image and the dictionary was 

divided into two parts, one represents rain component while 

the other represents non-rain component. 

 

4. SEPARATION OF THE SMOKE COMPONENT 
 

While the separated quasi-smoke and quasi-background 

components for each image block are sufficient for detection 

of smoke, the separation of the true smoke component, if any, 

from the background is required to assess the intensity of the 

smoke. However, this cannot be achieved at the block level 

through the dual-dictionary modeling. The reason is that the 

dual-dictionary modeling only imposes constraints on the 

smoke and background component without constraining the 

blending parameter, which is coupled with both components. 

A reliable estimation of the blending parameter requires 

appropriate constraints on it.  
Considering each pixel has a blending parameter, it is 

necessary to impose certain constraints based on the intuition that 

the pixel-wise blending parameters should be smooth across the 

entire image. Given one single image, block-based smoke 

detection can be performed using Algorithm 1 in a sliding 

window manner. Every pixel in the image can be classified as 

smoke or non-smoke according to the block-based detection 

results. Furthermore, by setting thresholds for the output score of 

SVM classifier, each pixel can be further classified into one of 

three categories: reliable smoke, reliable non-smoke, and 

uncertain. For both  reliable  smoke and non-smoke  pixels, their 

blending parameters are close to 1 and 0 respectively. Thus the 

problem reduces to the estimation of blending parameters for 

uncertain pixels. Based on this argument, the blending 

parameter may be estimated in a propagating fashion from the 

known pixels to the unknown ones.  
Such a formulation of the problem to estimate the blending 

parameter shares some common properties with image mat-

ting [9]. However, the separation of smoke component differs 

from deep image matting in three aspects. First, a trimap that 

serves as the constraints for deep image matting is accurate or 

error-free as it is usually manually constructed. In our case, a 

similar map is to be obtained through automatic detection; and 

this will be referred to as detection map hereinafter. 

Obviously, it includes detection errors. Second, almost all the 

deep image matting algorithms are developed to deal with 

cases where a substantial area of foreground objects to be 

separated is opaque. However, much of the area covered by 

smoke may be semi-transparent. Third, most existing matting 

methods only focus on alpha extraction but not foreground 

estimation. In our case, smoke is also expected to be extracted 

from single gray-scale images in addition to the blending 

parameter. For these differences, it has been found through 

experiments that the existing deep image matting algorithms 

do not work satisfactorily in our case. Therefore, a new 

method is developed for separating smoke component in a 

single image.  
For each uncertain pixel based on the detection results, the 

corresponding smoke component, background component, 

and blending parameter are all unknown. Thus some 

assumptions are required to solve this under-determined 

problem. First, based on the intuition that pixels that are 

spatially close and visually similar should have similar 

blending parameters, the following assumption is made: the 

blending parameter of a pixel can be approximated by a linear 

combination of the parameters of similar pixels with the 

weights being given by a similarity function K (i, j ) 

measuring the similarity between pixels. Such an assumption 

can be expressed mathematically  
as follows:  

ωi ≈ω j K (i, j )/ Di   or  Di ωi ≈ Ki ω, (10) 
j  

 
where ω ∈  R

n
 is a vector including ω values for all the n pixels 

in the input image. Di and Ki are defined as follows:  

Di  =K (i, j ), (11) 
j  

Ki  = [K (i, j ), · · · , K (i, n)] (12) 

Under this assumption, two key issues need to be addressed 

for the estimation of ω. First is the question of how to gather 

similar pixels j , given a pixel i of interest. Second is how to 

construct the similarity function, K (i, j ).  
Both the reliable smoke and reliable non-smoke pixels in a 

detection map are modeled by a Gaussian mixture model 

(GMM). The reason that GMM is adopted to cluster the known 

pixels is as follows. The detection map constructed from smoke 

detection includes some errors, which means that there are some 

misclassifications among reliable smoke, reliable non-smoke, and 

unknown pixels. Given a pixel of interest, some misclassified 

pixels may be   selected   as similar pixels to
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the one of interest, which will lead to an inaccurate estimation 

of ω. In order to reduce or eliminate the adverse effects of 

misclassified pixels on similar pixel selection process, we 

propose to cluster the reliable smoke and reliable non-smoke 

pixels using GMM. In addition, the similarity measurements 

between pixels are deemed to include both photometric and 

geometric information. Specifically, a local patch centered at 

each known pixel is selected and the gray-scale values of all 

the pixels in the local patch are used to capture the 

photometric information of the centering pixel. The spatial 

coordinates of each known pixel are regarded as the geometric 

information of the pixel. The photometric and geometric 

information form a feature vector and the clustering using 

GMM will be performed in the feature space. As an 

illustration, for the mth Gaussian, the corresponding Gaussian 

probability density function (PDF) is expressed as: 

 

where Lc = (D − A)
T

 (D − A) is referred to as the clustering 

Laplacian. In consideration of the constraints from the 
detection map, the blending parameter can be estimated by 
solving the following optimization problem: 
 

ω
∗

  = argmin ω
T
 Lc ω + λ(ω

T
 − v

T
 )V(ω − v), (19) 

 
where λ is a regularization parameter, V ∈  R

n×n
 is a diagonal 

matrix whose diagonal elements are one for known pixels (i.e. 

either reliable smoke or non-smoke) and zero for all the 

unknown pixels, and v ∈  R
n
 is a vector containing the 

specified ω values for the known pixels and zero for all the 

other pixels. Intuitively, the i th entry vi of v can be expressed 

as follows: 
 

vi = 

1 if pixel i is reliable smoke 

(20) 0 otherwise. 
 

1                    The solution to Equation (19), which is a quadratic function 

fm [p(i )] = 
  

  

             

(2π )
M/2

|   m |
1/2 

            of ω, can be obtained by differentiating it with respect to ω 

× exp {− 

1 

[p(i ) − μm ]
T
   m

−1
[p(i ) − μm ]},    (13) 

and setting the derivatives to zero. Thus the optimal blending 
 

parameter is: 

        

2         
where μm and  m are the mean vector and covariance matrix     ω∗ = 

 
(Lc 

 
+ λV)

−1
(λv). (21) 

of the mth Gaussian, p(i ) ∈  R
M

 is the M-dimensional feature         

vector for the i th pixel. Given an unknown pixel i of interest, For the smoke component, a similar assumption can be made: 

the PDFs for the pixel based on all the Gaussians can be the smoke component of a pixel can be approximated by a 

calculated. The Gaussian that achieves the highest PDF value linear combination of the smoke components of the similar 

will be selected and the corresponding known pixels used to pixels with the weights being given by a similarity function. 

learn this Gaussian will be regarded as similar pixels as the A similar analysis to that of the blending parameter leads to 

i th pixel.                    the following optimization problem:  

The similarity function should be constructed in such a 
s
∗

  = argmin s
T

 Lc s + λ(s
T

 − u
T

 )V(s − u), (22) way that it has a larger value if the distance between two 
pixels in the feature space is  smaller, and vice versa. Here where u ∈  R

n 
is a vector containing the pixel values from the 

Manhattan distance is adopted and the similarity function is 
  

input image f for reliable smoke pixels and zero for all the 

defined as [33]:   
1- 

   
||p(i ) − p( j )||1 , 

 
(14) 

other pixels. Intuitively, the i th entry ui of u can be expressed 
 K (i, j ) =      as follows:         
  

    

                       

                        

where p(i ) and p( j ) 

         C       
ui = 

fi if pixel i is reliable smoke 

(23) are the feature vectors for the i th and  0 otherwise. 
j th pixel respectively and C is a normalization constant. 

The optimal smoke component can be expressed as: 

 

After addressing the aforementioned two issues, we further  

define:                        
s
∗

  = (Lc + λV)
−1

(λu). (24)  K (1, 1)      · · ·   K (1, n)         
            

Once the blending parameter and smoke component are esti-  

A = 
.       . .     .    

(15) 
 .        

. 
   .   

, mated through solving Equations (21) and (24), they are sub-  .            .   

 K (n, 1)      · · ·   K (n, n)     stituted into the image formation model and the background 

and                    component can be calculated.   

  D1  0     · · · 0         
5. EXPERIMENTAL RESULTS 

 
             . .  .          
  

0 
 

D2 
   

. 
.               

 D =    .  . .  (16) To verify the methods proposed in this article, the follow- 
 .  . 

. 
    

. 
   

  .   
. 
   

. 0 
    

ing experiments were conducted and the related results are   .         

0 
    

  0  · · ·     Dn     reported in this section:     
                         

A ∈  R
n×n

 is often referred to as affinity matrix and D ∈  R
n×n (1) Visual  assessment  of  the  quasi-smoke  and  quasi- 

background components.  

is a diagonal matrix. According to Equation (10), we have: (2) Binary classification of smoke and non-smoke image 
    

Dω ≈ Aω. 
     

(17)          blocks to evaluate the discriminative power of the pro- 

Thus, 
                   posed feature.      
                   

(3) Classification of heavy smoke, light smoke, and non-  

(D − A)ω ≈ 0 

         

ω
T
 Lc ω ≈ 0, 

 

      or   (18) smoke based on the proposed feature.  
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Fig. 1. Examples of the bases from the learned smoke dictionary Ds.  
 
 
 
 

 

Fig. 2. Examples of the bases from the learned non-smoke dictionary Db. 

 

 

(4) Evaluation of the proposed feature on challenging 

images, such as fog, that have similar visual appearance 

as smoke.  
(5) Validation of the effectiveness of the proposed feature 

on real data.  
(6) Experiments of separating smoke from background on 

real images. 

 

5.1 Data Sets 
 

Five data sets were constructed for the above experiments.  
1) DS1: The data set consists of 1000 pure smoke images 

with the size of 16 × 16 pixels and was used to learn Ds. The 

widely-used K-SVD was adopted to train Ds which has the 

size of 256 × 500. Some basis samples from Ds are shown in 
Fig. 1.  

2) DS2: This data set consists of non-smoke images with 

the size of 16 × 16 pixels and was used to learn Db. To ensure 

that Db has good generalization ability, it was constructed by 
randomly cropping 60000 non-smoke images with the size of 
16×16 pixels from the images in the CIFAR-100 data set. 

Similarly, K-SVD was used to train Db which has the same 

size as Ds. Some basis samples from Db are shown in Fig. 2.  
3) DS3: This data set is a collection of smoke images with 

the size of 16 × 16 pixels and was used for testing the 

proposed detection algorithm. Specifically, it includes 5000 

image blocks that were manually cropped based on visual 

observation from 25 publicly available video clips of smoke. 

These video clips [1]–[3], cover indoor and outdoor, short and 

long distance surveillance scenes with different illuminations; 

example frames of which are shown in Fig. 3. Furthermore, 

half of the 5000 image blocks are heavy smoke and the other 

half are light smoke.  
4) DS4: This is a collection of general non-smoke image 

blocks used for testing the proposed detection algorithm and 

covers a large variety of real life image patches. Specifically, 

5000 images with the size of 16 × 16 pixels were randomly 

cropped from the images in the 15-scene data set.  
5) DS5: This data set is composed of challenging non-smoke 

block images used for testing the proposed detection algorithm. 

In a single image smoke detection problem there are three 

categories of challenges that could lead to misclassification or 

false detection. These challenges arise respectively from the 

physical formation process, transparency and homogeneity 

properties of smoke. As a result, each image in DS5 must exhibit 

at least one of the challenges in the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Example frames of the video clips of smoke.  

 
TABLE I  

DATA SETS USED IN THE RELATED DETECTION EXPERIMENTS  
 
 
 
 
 
 
 
 
three categories. The first category includes some objects sharing 

similar physical formation process as smoke, such as haze/fog, 

cloud, and steam. As shadow and glass have similar transparency 

property as smoke, they can be considered as the representative 

samples of the second category. Due to the homogeneous 

property of some pure smoke, image patches with high 

homogeneity may pose a challenge to accurate detection. Thus 

smooth wall, sky, clothes and vehicle body are included in the 

third category. Water is also considered due to its transparency 

property and high homogeneity. In summary, to construct DS5, 

images a total of 10 challenging object classes were collected 

from Internet and 2500 non-smoke images with the size of 16 × 

16 pixels were cropped randomly from the related challenging 

regions, with 250 block images in each class. Samples of 

challenging non-smoke images and the corresponding block 

images cropped are shown in Fig. 4.  
In a summary, the data sets used in the related detection 

experiments are listed in Table I. 

 

5.2 Separation of Quasi-Smoke and Quasi-Background 
 

Given a test image block f and the trained dictionaries Db 

and Ds, the corresponding sparse coefficients yb and ys are 

estimated by solving Equation (9). Then quasi-background 

component Dbyb and quasi-smoke component Dsys are 

calculated. For an image which includes many blocks, the 
separation can be performed on every block in a sliding 
window manner. To evaluate the separation performance 
qualitatively, visual inspection was conducted for both indoor 
and outdoor scenarios. Some separated quasi-smoke and 
quasi-background components are shown in Fig. 5. Notice that 
the pure non-smoke areas in the test images can be well 
represented by the corresponding quasi-background 
component. For the smoke-covered regions, most smoke 
information is included in the corresponding quasi-smoke 
component while the details 
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Fig. 4. Sample challenging non-smoke images and the corresponding block images cropped (The block images indicated by red rectangle in each image 
represent one of the following challenging object classes respectively: clothes, cloud, haze/fog, wall, glass, sky, shadow, steam, vehicle body, and water).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Quasi-smoke and quasi-background separation ((a) the test images, (b) the separated quasi-smoke components, (c) the separated quasi-background 
components). 

 

 

of non-smoke are characterized by the corresponding quasi-

background component. 

 

5.3 Classification of Smoke and Non-Smoke 
 

Given 5000 smoke image blocks (DS3) and 5000 general 
non-smoke image blocks (DS4), the discriminative power of 
the proposed feature was studied. Specifically, each of the 
10000 image blocks was considered as f. Given the trained 

dictionaries Db and Ds, the corresponding sparse coefficients 

yb and ys were estimated by solving Equation (9). The novel 

feature, (i.e. concatenated yb and ys) characterizing the test 
image block was input to an SVM classifier to determine 
whether it contains smoke. In the rest of the article, the 
proposed feature will be referred to as SC.  

To compare the SC feature with conventional image features 
for smoke detection, the texture feature, LBP, was chosen since it 
offered the state-of-the-art performance in video-based smoke 
detection [3]. As shown in [5], the texture feature extracted from 
the separated smoke component was more reliable than that 
extracted from the original video frame. In our experiments LBP 

was extracted from the separated components as well. After yb 

and ys were estimated, quasi-background component Dbyb and 

quasi-smoke component Dsys were obtained. Similarly to the 

trick used in [5], LBP of Dsys was considered as a feature for 

smoke detection, and will be referred to as L B PS in the rest of 
this article. Additionally, the concatenated LBP extracted 

respectively from Dbyb and Dsys may encode discriminative 
information and was tested 

 

 
TABLE II  

ACCURACIES FOR THE CLASSIFICATION OF SMOKE AND NON-SMOKE (L B P : 

EXTRACTED FROM THE ORIGINAL IMAGE BLOCK f ; L B PS : 

EXTRACTED FROM THE QUASI-SMOKE COMPONENT Dsys ONLY; 

L B PC : EXTRACTED FROM BOTH THE QUASI-SMOKE 

COMPONENT Dsys AND THE QUASI-BACKGROUND 

COMPONENT Dbyb AND THEN CONCATENATED)  
 
 
 
 
 

as well; and this will be referred to as L B PC hereafter. For 

completeness, LBP that was extracted from the original image 
block f without performing separation was also tested; and 
this will be referred to as L B P in the rest of this article.  

Both linear and radial basis function (RBF) kernel SVM were 

tested and 5-fold cross validation was performed in all 

experiments in this article, unless otherwise specified. The 

classification accuracies are reported in Table II. As shown in the 

table, among the four features tested, the proposed feature SC 

achieves the highest accuracy in the binary classification of 

smoke and non-smoke. As expected, the texture feature L B P 

extracted from f has the worst performance. With the texture 

information of both quasi-background and quasi-smoke 

components considered, L B PC is more discriminative than 

L B PS , which only represents the texture feature of quasi-  
smoke component. For clarity, the confusion matrix based on 

SC is shown in Table III. Furthermore, the ROC curves are 

adopted as performance measurement. They are shown
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TABLE III   

CONFUSION MATRIX FOR THE CLASSIFICATION OF SMOKE AND 

NON-SMOKE BASED ON THE PROPOSED FEATURE SC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. ROC curves for the classification of smoke and non-smoke (L B P: 

extracted from the original image block f; L B PS: extracted from the quasi-smoke 

component Dsys only; L B PC : extracted from both the quasi-smoke component 

Dsys and the quasi-background component Dbyb and then concatenated).  

 
 
 
 
 
 
 

 
Fig. 8. ROC curves for single image smoke detection based on different 
classifiers. 

 

 

were estimated through video-based background modeling. 

Given this data set, the smoke detection algorithm presented 

in [5] was implemented on these block images. A 5-fold cross 

validation was performed and the classification accuracy is 

92.8%. The proposed frame-based detection algorithm 

achieved 86.3% 5-fold cross validation accuracy. Notice that 

it is expected that the method in [5] would perform better 

since the video was captured by a stationary camera and it 

uses temporal information through the background modeling 

to estimate the background component, However, its accuracy 

can drop substantially if there is a small jitter of the camera. 

For the running time, it takes 0.75 second for the method in 

[5] to process an image. It takes 0.3 second for our frame-

based detection method to process an image with the same 

size. The running time is measured based on a single core 

MATLAB implementation on a PC with 2.00GHz Intel(R) 

Core(TM) i7 CPU and 8GB memory. 
 
 

 
Fig. 7. Illustrative classification results (blue rectangle: the selected region; 
red block: classified as smoke; green block: classified as non-smoke). Image 
is best viewed in color. 

 

 

in Fig. 6 along with area under the curve (AUC) values. It is 

evident that the proposed feature SC outperforms all the other 

three features.  
Some classification results are shown in Fig. 7. In each 

scene shown in Fig. 7, one smoke region and one non-smoke 

region were selected manually for illustration purpose; these 

are indicated using blue rectangle. Then some block images 

were randomly selected from the two regions as test samples. 

The smoke and non-smoke blocks classified by using the 

proposed feature are indicated by red block and green block 

respectively. Although there are a few misclassifications on 

block level, the selected regions indicated by blue rectangle 

will not be misclassified if a simple majority voting is 

employed.  
To compare the proposed detection algorithm with the 

result reported in [5], a data set was constructed from the data 

used for smoke detection test in [5]. The constructed data set 

includes 4000 blocks of images of 16 by 16 pixels, half of 

which are smoke (either heavy or light) and the rest are non-

smoke foreground objects. Notice that all the 4000 image 

blocks are associated with 4000 background image blocks that 

 

5.4 Classification of Heavy Smoke, Light 

Smoke and Non-Smoke 
 

Generally at the onset, smoke starts out lightly in a video 

surveillance scene. In order to be useful for assessing the stage 

of smoke, the algorithm should be able to differentiate 

amongst heavy smoke, light smoke, and non-smoke. Further-

more, the algorithm should not be sensitive to false alarm 

caused by some objects with high homogeneous appearance 

such as clothes and vehicle body. This consideration 

motivates us to conduct a ternary classification of heavy 

smoke, light smoke, and non-smoke based on the proposed 

feature. To the best of our knowledge, such a test has not been 

reported in the literature before.  
Specifically, 2500 image blocks were randomly selected 

from the data set of non-smoke DS4. Given these 2500 non-
smoke, 2500 heavy smoke, and 2500 light smoke image 
blocks, quasi-smoke and quasi-background components were 
separated and the proposed feature SC was extracted. For 

comparative evaluation, L B P, L B PS and L B PC were also 

extracted as texture feature. The classification accuracies are 
reported in Table IV. As shown, among all the four features 
the highest accuracy was obtained when using the proposed 
feature SC. It is also noted that, for the classification of heavy 

smoke, light smoke, and non-smoke, the features L B PS , L B 

PC and SC extracted based on the separated components still 

outperform L B P. For clarity, the confusion matrix for 
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Fig. 9. Examples of image-based detection. Six non-smoke images and three smoke images are sampled from ImageNet and each image is divided into 16 × 16 

non-overlapping blocks and each block went through the smoke detector. Smoke blocks are highlighted in red boxes. 

 
  TABLE IV   TABLE V 

ACCURACIES FOR THE CLASSIFICATION OF HEAVY SMOKE, CONFUSION MATRIX FOR THE CLASSIFICATION OF HEAVY SMOKE, LIGHT 

LIGHT SMOKE, AND NON-SMOKE (L B P : EXTRACTED FROM SMOKE, AND NON-SMOKE BASED ON THE PROPOSED FEATURE SC 
THE ORIGINAL IMAGE BLOCK f ; L B PS : EXTRACTED FROM     

THE QUASI-SMOKE COMPONENT Dsys ONLY; L B PC : 
    

    

EXTRACTED FROM BOTH THE QUASI-SMOKE COMPONENT     

Dsys AND THE QUASI-BACKGROUND COMPONENT 
    

    

Dbyb AND THEN CONCATENATED)     
         

         

          
 

 

ternary classification based on SC is shown in Table V. Notice 

that most non-smoke can be differentiated from heavy smoke 

and light smoke. The main misclassification occurs between 

heavy smoke and light smoke. This result is consistent with 

the classification of smoke and non-smoke. 

 

5.5 Differentiation of Smoke From Challenging Objects 
 

Recall that there are objects with similar visual properties 

as smoke that may challenge the smoke detector. In this 

section, experiment on differentiating smoke from some 

challenging objects is reported. It is noteworthy that this is the 

first time the result of such experiment was reported.  
In this experiment, 2500 smoke (including both heavy and 

light) image blocks that were randomly selected from 

 

the smoke data set DS3 and 2500 challenging non-smoke 
image blocks from DS5 were used. To make a comparison, L 

B PC which has been proven to be the best among LBP-based 

features was extracted from quasi-smoke and quasi-
background components as texture feature.  

The classification of these image blocks into smoke and 
non-smoke yielded classification accuracies of 77.16% and 

79.2% when using L B PC and SC respectively. Specifically, 

for each class of the challenging non-smoke objects, the 
accuracies (%) of being correctly classified as non-smoke are 

shown in Table VI. Notice that although L B PC and SC lead 

to similar classification performance on the entire data set, 
their performance on each class varies significantly. Among 
all the challenging non-smoke classes considered, when SC is 
used, the test images of sky and steam have the highest and 
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TABLE VI   

ACCURACIES (%) OF EACH CLASS OF OBJECTS IN DS5 BEING 

CORRECTLY CLASSIFIED AS NON-SMOKE  
 
 
 
 
 
 
 
 
 
 
 
 

 

lowest probability of being correctly classified as non-smoke 

respectively. 

 

 5.6 Smoke Detection: Real Application Considerations 
 

Based on the results so far obtained, the proposed feature 

SC has been validated to effectively differentiate between the 

classes of smoke and common non-smoke; and the classes of 

smoke and challenging non-smoke. However, a classifier 

which can well differentiate smoke from common non-smoke 

may not effectively classify smoke from challenging non-

smoke. Similar argument can be made for a classifier trained 

using smoke and challenging non-smoke only. Moreover, in a 

smoke detection system it will be preferable to filter out 

common non-smoke at a first stage of smoke detection. Then 

smoke and challenging non-smoke are further differentiated at 

a second stage. Based on these considerations, a tree-

structured classifier may have good generalization ability in 

classifying smoke from non-smoke and was constructed. 

Using the data sets DS3, DS4, and DS5 described in Section 

V-A, two partitions (training and test data) were created. In 

the training set, there are 1500 image blocks including either 

heavy or light smoke, 1500 common non-smoke image blocks 

selected randomly, and 1500 challenging non-smoke block 

images. The test set comprises 3500 smoke image blocks, 

3500 common non-smoke image blocks, and 1000 

challenging non-smoke image blocks.  
Five SVMs (listed below) were trained using the proposed 

feature SC: 
 

• Classifier1: a binary classifier trained on the 1500 smoke 

image blocks and the 1500 common non-smoke block 

images  

• Classifier2: a binary classifier trained on the 1500 smoke 

block images and the 1500 challenging non-smoke image 

blocks  

• Classifier3: a binary classifier trained on the 1500 smoke 

image blocks and the 3000 non-smoke (including both 

common and challenging) image blocks  

• Classifier4: a ternary classifier trained on the 1500 

smoke image blocks, the 1500 common non-smoke 

image blocks, and the 1500 challenging non-smoke 

image blocks  

• Classifier5: a binary classifier trained on the 1500 smoke 

image blocks, the 1500 common non-smoke image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. An input image and its corresponding detection maps constructed 
based on the results of smoke detection using different thresholds for the 
output score of SVM classifier. (a) Input image. (b) Detection map-1. (c) 
Detection map-2. (d) Detection map-3.  
 
 

blocks, and the 1500 challenging non-smoke image 

blocks (the smoke image blocks and challenging non-

smoke image blocks were considered to be from the 

same class) 
 

Based on the trained five SVMs, two classifiers with tree-

structure were constructed. They are: 
 

• Classifier6: a concatenated classifier of Classifier1 and 

Classifier2  

• Classifier7: a concatenated classifier of Classifier5 and 

Classifier2 
 

Given the 3500 smoke image blocks and 4500 non-smoke 

(including 3500 common and 1000 challenging non-smoke) 

image blocks in the test set, image separation was performed 

and SC was extracted. The ROC curves for smoke detection 

based on the seven classifiers are shown in Fig. 8. Overall 

tree-structured classifiers Classifier6 and Classifier7 

outperform all the other five single SVM classifiers. 

Furthermore, Classifier7 leads to the best performance among 

all the classifiers. Trained on the smoke and challenging non-

smoke image blocks only, Classifier2 gives the worst 

performance among all the classifiers. The ROC curve based 

on Classifier7 also indicates the effectiveness of the proposed 

feature SC for single image smoke detection.  
The block-based detector provides a core algorithm for 

many application systems with specific engineering 

requirements. In practice, false detections at block-level are 

expected to be sparse and isolated. They are not difficult to be 

corrected through a post processing by majority voting, 

morphological operation or Markov-random field (MRF) 

modelling on the detection map. If applications permit, these 

possible false detected smoke patches can also be kept in a 

queue and given more attention (as suspicious patches) in the 

following 
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Fig. 11. Results for frame-based smoke separation. The left two columns show the results of the proposed method and the right two columns show the results 
obtained using GIF. 

 

 

images taken. This will help to decide whether this is a true 

positive or a false alarm. However, building a practical system 

is not the focus of the paper. Figure 9 shows the image-based 

detection where six non-smoke images and three smoke 

images are sampled from Image Net. Each image is divided 

into 16 × 16 non-overlapping blocks and each block went 

through the smoke detector. If a block is detected as smoke, 

the block is highlighted in a red box. Notice that there is no 

false detection in the five of the six non-smoke images and 

there are only a few isolated false detections in the non-smoke 

image (d), which is easy to be corrected as discussed above. 
 

5.7 Single Image Frame Smoke Separation 
 

To validate the effectiveness of constructing detection map 

based on the results of smoke detection, an input image and its 

corresponding detection maps constructed according to 

different thresholds for the output score of SVM classifier are 

shown in Fig. 10. Note that reliable smoke, reliable non-

smoke, and unknown pixels are indicated with white, black, 

and gray respectively in the detection maps. Despite the 

different detection maps, there are some misclassification.  
In addition, some results for smoke separation based on the 

proposed algorithm are shown in Fig. 11 and 12, which cover 

both outdoor and indoor scenarios with smoke at different stages. 

As can be noticed from Fig. 11 and the left example of Fig. 12, a 

small percentage of misclassification leads to a relatively reliable 

detection map, which further yields good estimation of the 

blending parameter and smoke component. When 

misclassification is considerable, as is shown in the right example 

of Fig. 12, the estimation of the blending parameter and smoke 

component becomes inaccurate. In terms 

 

 

of background separation, although it is hard to reliably 

estimate the part that is covered by heavy smoke, certain areas 

of the background covered by light smoke are recovered.  
Experiments were also conduced using the guided image 

filtering (GIF) to estimate the blending parameter and smoke 

component of the images shown in Figs. 11 and 12. For a fair 

comparison, an initial image of blending parameter was 

obtained by applying the proposed smoke detection algorithm. 

Then, GIF was applied to refine the blending parameter 

estimation guided by the original image. For the smoke 

component, an initial smoke image was extracted by taking 

initially detected smoke pixels and refining the corresponding 

smoke image by the GIF, with the original image as the 

guidance image. The background images were then calculated 

from the estimated blending parameters and the smoke 

components. For all the images, parameters of the GIF were 

tuned to achieve the best quality of both blending parameter 

and smoke image (judged visually as there is no ground truth 

for these real images).  
Observation of the results shows that (a) GIF-based method 

tends to fail to estimate the light smoke, which is often semi-

transparent. These regions are highlighted in red boxes on the 

images; (b) it is possible to further tune the GIF parameters, 

especially to increase the radius, such that the light smoke can 

be captured to some extent in the smoke component and 

blending parameter. However, in this case, the background 

structure would become visible in the smoke component due 

to fact that the GIF transfers the structure of the guidance 

image to the filtering output. Computationally, the GIF has 

advantages. To process a mega-pixel image, GIF takes about 1 

second while the proposed smoke separation method takes 
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Fig. 12. Results for frame-based smoke separation. The left two columns show the results of the proposed method and the right two columns show the results 
obtained using GIF (cont.). 

 

 

40 seconds on the same PC described above. Both algorithms 

were implemented in MATLAB. It is expected that GPU based 

implementation could reduce the processing time substantially. 

 

6. CONCLUSION 
 

In this article, novel methods based on finite element method 

(FEM) have been proposed and verified for the detection and 

separation of smoke from a single image frame of a video. In 

particular, based on the imaging model, an optimization scheme 

allowing the separation of quasi-smoke and quasi-background 

components was formulated using dual over-complete 

dictionaries. A novel feature is constructed as a concatenation of 

the respective sparse coefficients for detection. In addition, a 

method based on the concept of deep image matting has been 

developed to separate the true smoke and background 

components from the automatic detection results. Extensive 

experiments on detection were conducted and the results indicate 

that the proposed feature significantly outperforms the existing 

features for smoke detection. This verifies the efficacy of the 

detection method. Moreover, the proposed method is able to 

differentiate smoke from other challenging objects with similar 

visual appearance in a gray-scale image, viz. fog/haze, cloud, 

shadow, etc. Experiments on smoke separation have also 

demonstrated that the proposed separation method can effectively 

estimate/separate the true smoke and background components. 

Further improvement may be achieved through nonlinear 

modeling of the smoke component such as kernel or auto-encoder 

based modeling.  
The proposed framework is suitable and can be extended 

for detection and separation of transparent or semi-transparent 

and deformable objects. 
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